DANH NGÔN HAY
Một cuốn sách hay thực sự hay dạy tôi nhiều điều hơn là đọc nó, Tôi phải nhanh chóng đặt nó xuống, bắt đầu sống theo những điều nó chỉ dẫn. Điều tôi bắt đầu bằng cách đọc, tôi phải kết thúc bằng hành động
268 BT...Bồi dưỡng HSG toán 9.

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Trần Thị Minh Hạnh
Ngày gửi: 09h:24' 24-12-2025
Dung lượng: 2.3 MB
Số lượt tải: 0
Nguồn:
Người gửi: Trần Thị Minh Hạnh
Ngày gửi: 09h:24' 24-12-2025
Dung lượng: 2.3 MB
Số lượt tải: 0
Số lượt thích:
0 người
WWW.MATHVN.COM
MAI TRỌNG MẬU
PHẦN I: ĐỀ BÀI
1. Chứng minh 7 là số vô tỉ.
2. a) Chứng minh : (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki : (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức : S = x2 + y2.
4. a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy :
b) Cho a, b, c > 0. Chứng minh rằng :
a+b
³ ab .
2
bc ca ab
+ +
³a+b+c
a
b
c
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
7. Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c)
8. Tìm liên hệ giữa các số a và b biết rằng : a + b > a - b
9. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh : (a + 1)(b + 1)(c + 1) ≥ 8
10. Chứng minh các bất đẳng thức :
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
11. Tìm các giá trị của x sao cho :
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
12. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị
nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
16. Tìm giá trị lớn nhất của biểu thức : A =
1
x - 4x + 9
2
17. So sánh các số thực sau (không dùng máy tính) :
a) 7 + 15 và 7
b)
c)
23 - 2 19
và
3
27
18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn
d)
17 + 5 + 1 và
3 2 và
45
2 3
2 nhưng nhỏ hơn
3
19. Giải phương trình : 3x 2 + 6x + 7 + 5x 2 + 10x + 21 = 5 - 2x - x 2 .
20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.
1
1
1
1
+
+ .... +
+ ... +
.
1.1998
2.1997
k(1998 - k + 1)
1998 - 1
1998
Hãy so sánh S và 2.
.
1999
22. Chứng minh rằng : Nếu số tự nhiên a không phải là số chính phương thì a là số vô tỉ.
21. Cho S =
23. Cho các số x và y cùng dấu. Chứng minh rằng :
1
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
x y
+ ³2
y x
æ x 2 y2 ö æ x y ö
b) ç 2 + 2 ÷ - ç + ÷ ³ 0
x ø èy xø
èy
a)
æ x 4 y4 ö æ x 2 y2 ö æ x y ö
+ 4 ÷-ç 2 + 2 ÷+ç + ÷ ³ 2.
4
y
x ø èy
x ø èy xø
è
c) ç
24. Chứng minh rằng các số sau là số vô tỉ :
a)
1+ 2
b) m +
3
với m, n là các số hữu tỉ, n ≠ 0.
n
25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không ?
æx yö
x 2 y2
26. Cho các số x và y khác 0. Chứng minh rằng : 2 + 2 + 4 ³ 3 ç + ÷ .
y
x
èy xø
27. Cho các số x, y, z dương. Chứng minh rằng :
x 2 y2 z2 x y z
+ +
³ + + .
y2 z2 x 2 y z x
28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
29. Chứng minh các bất đẳng thức :
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.
31. Chứng minh rằng : [ x ] + [ y ] £ [ x + y ] .
1
.
x - 6x + 17
x y z
33. Tìm giá trị nhỏ nhất của : A = + +
với x, y, z > 0.
y z x
32. Tìm giá trị lớn nhất của biểu thức : A =
2
34. Tìm giá trị nhỏ nhất của : A = x2 + y2 biết x + y = 4.
35. Tìm giá trị lớn nhất của : A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0 ; x + y + z = 1.
36. Xét xem các số a và b có thể là số vô tỉ không nếu :
a
là số vô tỉ.
b
a
b) a + b và
là số hữu tỉ (a + b ≠ 0)
b
a) ab và
c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)
37. Cho a, b, c > 0. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c)
a
b
c
d
+
+
+
³2
b+c c+d d+a a +b
39. Chứng minh rằng [ 2x ] bằng 2 [ x ] hoặc 2 [ x ] + 1
38. Cho a, b, c, d > 0. Chứng minh :
40. Cho số nguyên dương a. Xét các số có dạng : a + 15 ; a + 30 ; a + 45 ; … ; a + 15n.
Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
41. Tìm các giá trị của x để các biểu thức sau có nghĩa :
2
www.MATHVN.com
WWW.MATHVN.COM
A= x 2 - 3
B=
MAI TRỌNG MẬU
1
x 2 + 4x - 5
C=
1
D=
x - 2x - 1
1
E= x+
1- x2 - 3
2
+ -2x
x
G = 3x - 1 - 5x - 3 + x 2 + x + 1
42. a) Chứng minh rằng : | A + B | ≤ | A | + | B | . Dấu “ = ” xảy ra khi nào ?
b) Tìm giá trị nhỏ nhất của biểu thức sau : M =
x 2 + 4x + 4 + x 2 - 6x + 9 .
4x 2 + 20x + 25 + x 2 - 8x + 16 = x 2 + 18x + 81
c) Giải phương trình :
43. Giải phương trình : 2x 2 - 8x - 3 x 2 - 4x - 5 = 12 .
44. Tìm các giá trị của x để các biểu thức sau có nghĩa :
A = x2 + x + 2
E=
B=
1
G=
2x + 1 + x
45. Giải phương trình :
1
1 - 3x
C = 2 - 1 - 9x 2
x
+ x-2
x -4
1
D=
x 2 - 5x + 6
H = x 2 - 2x - 3 + 3 1 - x 2
2
x 2 - 3x
=0
x -3
46. Tìm giá trị nhỏ nhất của biểu thức : A =
x +x.
47. Tìm giá trị lớn nhất của biểu thức : B = 3 - x + x
3 +1
48. So sánh : a) a = 2 + 3 và b=
b) 5 - 13 + 4 3 và
2
c) n + 2 - n + 1 và n+1 - n (n là số nguyên dương)
3 -1
49. Với giá trị nào của x, biểu thức sau đạt giá trị nhỏ nhất : A = 1 - 1 - 6x + 9x 2 + (3x - 1) 2 .
50. Tính : a)
4-2 3
b)
11 + 6 2
d) A = m 2 + 8m + 16 + m 2 - 8m + 16
c)
27 - 10 2
e) B = n + 2 n - 1 + n - 2 n - 1 (n
≥ 1)
51. Rút gọn biểu thức : M =
8 41
45 + 4 41 + 45 - 4 41
.
52. Tìm các số x, y, z thỏa mãn đẳng thức : (2x - y) 2 + (y - 2)2 + (x + y + z) 2 = 0
53. Tìm giá trị nhỏ nhất của biểu thức : P = 25x 2 - 20x + 4 + 25x 2 - 30x + 9 .
54. Giải các phương trình sau :
a) x 2 - x - 2 - x - 2 = 0
d) x - x 4 - 2x 2 + 1 = 1
b) x 2 - 1 + 1 = x 2
e) x 2 + 4x + 4 + x - 4 = 0
h) x 2 - 2x + 1 + x 2 - 6x + 9 = 1
k) x + 3 - 4 x - 1 + x + 8 - 6 x - 1 = 1
3
c) x 2 - x + x 2 + x - 2 = 0
g) x - 2 + x - 3 = -5
i) x + 5 + 2 - x = x 2 - 25
l) 8x + 1 + 3x - 5 = 7x + 4 + 2x - 2
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
55. Cho hai số thực x và y thỏa mãn các điều kiện : xy = 1 và x > y. CMR:
x 2 + y2
³2 2.
x-y
56. Rút gọn các biểu thức :
a) 13 + 30 2 + 9 + 4 2
b) m + 2 m - 1 + m - 2 m - 1
c) 2 + 3. 2 + 2 + 3 . 2 + 2 + 2 + 3 . 2 - 2 + 2 + 3
2+ 3 =
57. Chứng minh rằng
58. Rút gọn các biểu thức :
a) C =
6+2
(
d) 227 - 30 2 + 123 + 22 2
6
2
+
.
2
2
)
6 + 3 + 2 - 6-2
(
6- 3+ 2
)
9-6 2 - 6
.
3
b) D =
2
59. So sánh :
a)
6 + 20 và 1+ 6
b)
17 + 12 2 và
2 +1
c)
28 - 16 3 và 3 - 2
60. Cho biểu thức : A = x - x 2 - 4x + 4
a) Tìm tập xác định của biểu thức A.
b) Rút gọn biểu thức A.
61. Rút gọn các biểu thức sau : a)
c)
11 - 2 10
b)
9 - 2 14
3 + 11 + 6 2 - 5 + 2 6
2 + 6 + 2 5 - 7 + 2 10
62. Cho a + b + c = 0 ; a, b, c ≠ 0. Chứng minh đẳng thức :
63. Giải bất phương trình :
1 1 1
1 1 1
+ 2+ 2 = + +
2
a
b
c
a b c
x 2 - 16x + 60 < x - 6 .
64. Tìm x sao cho : x 2 - 3 + 3 £ x 2 .
65. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = x2 + y2 , biết rằng :
x2(x2 + 2y2 – 3) + (y2 – 2)2 = 1 (1)
66. Tìm x để biểu thức có nghĩa:
a) A =
1
x - 2x - 1
67. Cho biểu thức : A =
16 - x 2
b) B =
+ x 2 - 8x + 8 .
2x + 1
x + x 2 - 2x
x - x - 2x
2
-
x - x 2 - 2x
x + x - 2x
2
.
a) Tìm giá trị của x để biểu thức A có nghĩa.
b) Rút gọn biểu thức A. c) Tìm giá trị của x để A < 2.
68. Tìm 20 chữ số thập phân đầu tiên của số : 0,9999....9 (20 chữ số 9)
69. Tìm giá trị nhỏ nhất, giá trị lớn nhất của : A = | x - 2 | + | y – 1 | với | x | + | y | = 5
70. Tìm giá trị nhỏ nhất của A = x4 + y4 + z4 biết rằng xy + yz + zx = 1
71. Trong hai số : n + n + 2 và 2 n+1 (n là số nguyên dương), số nào lớn hơn ?
4
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
72. Cho biểu thức A = 7 + 4 3 + 7 - 4 3 . Tính giá trị của A theo hai cách.
73. Tính : ( 2 + 3 + 5)( 2 + 3 - 5)( 2 - 3 + 5)(- 2 + 3 + 5)
74. Chứng minh các số sau là số vô tỉ :
3+ 5 ;
3- 2 ; 2 2 +3
75. Hãy so sánh hai số : a = 3 3 - 3 và b=2 2 - 1 ;
76. So sánh
2 + 5 và
5 +1
2
4 + 7 - 4 - 7 - 2 và số 0.
2+ 3+ 6+ 8+4
.
2+ 3+ 4
77. Rút gọn biểu thức : Q =
78. Cho P = 14 + 40 + 56 + 140 . Hãy biểu diễn P dưới dạng tổng của 3 căn thức bậc hai
79. Tính giá trị của biểu thức x2 + y2 biết rằng : x 1 - y 2 + y 1 - x 2 = 1 .
80. Tìm giá trị nhỏ nhất và lớn nhất của : A = 1 - x + 1 + x .
81. Tìm giá trị lớn nhất của : M =
(
a+ b
)
2
với a, b > 0 và a + b ≤ 1.
82. CMR trong các số 2b + c - 2 ad ; 2c + d - 2 ab ; 2d + a - 2 bc ; 2a + b - 2 cd có ít
nhất hai số dương (a, b, c, d > 0).
83. Rút gọn biểu thức : N = 4 6 + 8 3 + 4 2 + 18 .
84. Cho x + y + z = xy + yz + zx , trong đó x, y, z > 0. Chứng minh x = y = z.
85. Cho a1, a2, …, an > 0 và a1a2…an = 1. Chứng minh: (1 + a1)(1 + a2)…(1 + an) ≥ 2n.
86. Chứng minh :
(
a+ b
)
2
³ 2 2(a + b) ab
(a, b ≥ 0).
87. Chứng minh rằng nếu các đoạn thẳng có độ dài a, b, c lập được thành một tam giác thì các
đoạn thẳng có độ dài a , b , c cũng lập được thành một tam giác.
(x + 2) 2 - 8x
.
2
xx
2
a +2
89. Chứng minh rằng với mọi số thực a, ta đều có :
³ 2 . Khi nào có đẳng thức ?
2
a +1
88. Rút gọn : a) A =
ab - b 2
a
b
b
b) B =
90. Tính : A = 3 + 5 + 3 - 5 bằng hai cách.
91. So sánh : a)
92. Tính : P =
3 7 +5 2
và 6,9
b)
5
2+ 3
2- 3
+
.
2 + 2+ 3
2 - 2- 3
13 - 12 và
7- 6
x + 2 + 3 2x - 5 + x - 2 - 2x - 5 = 2 2 .
1.3.5...(2n - 1)
1
94. Chứng minh rằng ta luôn có : Pn =
<
; "n Î Z+
2.4.6...2n
2n + 1
93. Giải phương trình :
5
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
a2
b2
a+ b£
+
.
b
a
95. Chứng minh rằng nếu a, b > 0 thì
96. Rút gọn biểu thức :
A=
x - 4(x - 1) + x + 4(x - 1) æ
1 ö
.ç1 ÷.
è x -1 ø
x 2 - 4(x - 1)
a b +b a
1
:
= a - b (a, b > 0 ; a ≠ b)
ab
a- b
æ 14 - 7
æ a + a öæ a - a ö
15 - 5 ö
1
b) ç
+
= -2
c) ç 1 +
÷:
÷ç 1 ÷ = 1 - a (a >
1- 3 ø 7 - 5
a + 1 øè
a -1 ø
è 1- 2
è
97. Chứng minh các đẳng thức sau : a)
0).
5 - 3 - 29 - 6 20
98. Tính : a)
æ
c) ç
è
; b) 2 3 + 5 - 13 + 48 .
ö
28 - 16 3 ÷ . 7 + 48 .
ø
99. So sánh : a) 3 + 5 và 15
b) 2 + 15 và 12 + 7
16
c) 18 + 19 và 9
d)
và 5. 25
2
7 + 48 -
100. Cho hằng đẳng thức :
a± b =
a + a2 - b
a - a2 - b
±
(a, b > 0 và a2 – b > 0).
2
2
Áp dụng kết quả để rút gọn :
a)
c)
2+ 3
2 + 2+ 3
+
2- 3
2 - 2- 3
; b)
3- 2 2
17 - 12 2
-
3+ 2 2
17 + 12 2
2 10 + 30 - 2 2 - 6
2
:
2 10 - 2 2
3 -1
101. Xác định giá trị các biểu thức sau :
a) A =
b) B =
xy - x 2 - 1. y 2 - 1
xy + x 2 - 1. y 2 - 1
a + bx + a - bx
a + bx - a - bx
với x =
với x =
1æ
1ö
ça + ÷ , y =
2è
aø
1æ
1ö
ç b + ÷ (a > 1 ; b > 1)
2è
bø
2am
, m < 1.
b (1 + m 2 )
2x - x 2 - 1
102. Cho biểu thức P(x) =
3x 2 - 4x + 1
a) Tìm tất cả các giá trị của x để P(x) xác định. Rút gọn P(x).
b) Chứng minh rằng nếu x > 1 thì P(x).P(- x) < 0.
103. Cho biểu thức A =
6
x+2-4 x -2 + x +2+4 x -2
.
4 4
- +1
x2 x
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
a) Rút gọn biểu thức A.
b) Tìm các số nguyên x để biểu thức A là một số nguyên.
104. Tìm giá trị lớn nhất (nếu có) hoặc giá trị nhỏ nhất (nếu có) của các biểu thức sau:
a) 9 - x 2
e) 1 - 2 1 - 3x
b) x - x (x > 0)
c) 1 + 2 - x
g) 2x 2 - 2x + 5
105. Rút gọn biểu thức : A =
h) 1 - - x 2 + 2x + 5
x + 2x - 1 - x - 2x - 1 , bằng ba cách ?
5 3 + 5 48 - 10 7 + 4 3
106. Rút gọn các biểu thức sau : a)
b)
4 + 10 + 2 5 + 4 - 10 + 2 5
c)
107. Chứng minh các hằng đẳng thức với b ≥ 0 ; a ≥
(
)
a)
a + b ± a - b = 2 a ± a2 - b
b)
a + a2 - b
a - a2 - b
a± b =
±
2
2
108. Rút gọn biểu thức : A =
109. Tìm x và y sao cho :
d) x - 5 - 4
1
i)
2x - x + 3
94 - 42 5 - 94 + 42 5 .
b
x + 2 2x - 4 + x - 2 2x - 4
x+y-2 = x + y - 2
110. Chứng minh bất đẳng thức :
a 2 + b2 + c2 + d 2 ³
(a + c)
2
+ (b + d) .
2
a2
b2
c2
a+b+c
111. Cho a, b, c > 0. Chứng minh :
+
+
³
.
b+c c+a a +b
2
112. Cho a, b, c > 0 ; a + b + c = 1. Chứng minh :
a)
a + 1 + b + 1 + c + 1 < 3,5
113. CM :
(a
2
+ c 2 )( b 2 + c2 ) +
b)
(a
2
a +b + b+c + c+a £ 6 .
+ d 2 )( b 2 + d 2 ) ³ (a + b)(c + d) với a, b, c, d > 0.
114. Tìm giá trị nhỏ nhất của : A = x + x .
115. Tìm giá trị nhỏ nhất của : A =
(x + a)(x + b)
.
x
116. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = 2x + 3y biết 2x2 + 3y2 ≤ 5.
117. Tìm giá trị lớn nhất của A = x + 2 - x .
118. Giải phương trình :
x - 1 - 5x - 1 = 3x - 2
119. Giải phương trình :
x + 2 x -1 + x - 2 x -1 = 2
120. Giải phương trình : 3x 2 + 21x + 18 + 2 x 2 + 7x + 7 = 2
3x 2 + 6x + 7 + 5x 2 + 10x + 14 = 4 - 2x - x 2
122. Chứng minh các số sau là số vô tỉ : 3 - 2
;
2 2+ 3
121. Giải phương trình :
123. Chứng minh x - 2 + 4 - x £ 2 .
124. Chứng minh bất đẳng thức sau bằng phương pháp hình học :
a 2 + b 2 . b 2 + c 2 ³ b(a + c)
7
với a, b, c > 0.
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
125. Chứng minh (a + b)(c + d) ³ ac + bd với a, b, c, d > 0.
126. Chứng minh rằng nếu các đoạn thẳng có độ dài a, b, c lập được thành một tam giác thì các
đoạn thẳng có độ dài a , b , c cũng lập được thành một tam giác.
(a + b)2 a + b
127. Chứng minh
+
³ a b + b a với a, b ≥ 0.
2
4
a
b
c
128. Chứng minh
+
+
> 2 với a, b, c > 0.
b+c
a+c
a+b
129. Cho x 1 - y 2 + y 1 - x 2 = 1 . Chứng minh rằng x2 + y2 = 1.
130. Tìm giá trị nhỏ nhất của A =
x - 2 x -1 + x + 2 x -1
131. Tìm GTNN, GTLN của A = 1 - x + 1 + x .
132. Tìm giá trị nhỏ nhất của A =
x 2 + 1 + x 2 - 2x + 5
133. Tìm giá trị nhỏ nhất của A = - x 2 + 4x + 12 - - x 2 + 2x + 3 .
134. Tìm GTNN, GTLN của : a) A = 2x + 5 - x 2
(
b) A = x 99 + 101 - x 2
135. Tìm GTNN của A = x + y biết x, y > 0 thỏa mãn
)
a b
+ = 1 (a và b là hằng số dương).
x y
136. Tìm GTNN của A = (x + y)(x + z) với x, y, z > 0 , xyz(x + y + z) = 1.
xy yz zx
+ +
với x, y, z > 0 , x + y + z = 1.
z
x
y
x2
y2
z2
138. Tìm GTNN của A =
+
+
biết x, y, z > 0 , xy + yz + zx = 1 .
x+y y+z z+x
137. Tìm GTNN của A =
139. Tìm giá trị lớn nhất của : a) A =
b) B =
(
a+ b
) (
4
+
a+ c
) (
4
+
(
a+ b
a+ d
)
2
với a, b > 0 , a + b ≤ 1
) (
4
+
b+ c
) (
4
+
b+ d
) (
4
+
c+ d
)
4
với a, b, c, d > 0 và a + b + c + d = 1.
140. Tìm giá trị nhỏ nhất của A = 3x + 3y với x + y = 4.
b
c
+
với b + c ≥ a + d ; b, c > 0 ; a, d ≥ 0.
c+d a+b
141. Tìm GTNN của A =
142. Giải các phương trình sau :
a) x 2 - 5x - 2 3x + 12 = 0
d) x - 1 - x + 1 = 2
b) x 2 - 4x = 8 x - 1
e) x - 2 x - 1 - x - 1 = 1
h) x + 2 - 4 x - 2 + x + 7 - 6 x - 2 = 1
k) 1 - x 2 - x = x - 1
m) x 2 + 6 = x - 2 x 2 - 1
o) x - 1 + x + 3 + 2
8
c) 4x + 1 - 3x + 4 = 1
g) x + 2x - 1 + x - 2x - 1 = 2
i) x + x + 1 - x = 1
l) 2x 2 + 8x + 6 + x 2 - 1 = 2x + 2
n) x + 1 + x + 10 = x + 2 + x + 5
( x - 1) ( x 2 - 3x + 5) = 4 - 2x
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
p) 2x + 3 + x + 2 + 2x + 2 - x + 2 = 1 + 2 x + 2 .
q) 2x 2 - 9x + 4 + 3 2x - 1 = 2x 2 + 21x - 11
(
143. Rút gọn biểu thức : A = 2 2 - 5 + 3 2
)(
144. Chứng minh rằng, "n Î Z+ , ta luôn có : 1 +
145. Trục căn thức ở mẫu : a)
1
1+ 2 + 5
)
18 - 20 + 2 2 .
(
)
1
1
1
+
+ .... +
> 2 n +1 -1 .
2
3
n
1
b)
.
x + x +1
146. Tính :
5 - 3 - 29 - 6 20
a)
(
147. Cho a = 3 - 5 . 3 + 5
148. Cho b =
a)
c)
(
3- 2 2
17 - 12 2
-
b) 6 + 2 5 - 13 + 48
)(
)
17 + 12 2
149. Giải các phương trình sau :
)
(5 - x )
5 - x + ( x - 3) x - 3
5- x + x -3
b)
=2
5 - 3 - 29 - 12 5
10 - 2 . Chứng minh rằng a là số tự nhiên.
3+ 2 2
3 -1 x - x + 4 - 3 = 0
c)
(
. b có phải là số tự nhiên không ?
)
3 -1 x = 2
(
)
3 +1 x - 3 3
d) x + x - 5 = 5
150. Tính giá trị của biểu thức :
M = 12 5 - 29 + 25 + 4 21 - 12 5 + 29 - 25 - 4 21
1
1
1
1
+
+
+ ... +
.
1+ 2
2+ 3
3+ 4
n -1 + n
1
1
1
1
152. Cho biểu thức : P =
+
- ... +
2- 3
3- 4
4- 5
2n - 2n + 1
151. Rút gọn : A =
a) Rút gọn P.
b) P có phải là số hữu tỉ không ?
1
1
1
1
+
+
+ ... +
.
2 1 +1 2 3 2 + 2 3 4 3 + 3 4
100 99 + 99 100
1
1
1
154. Chứng minh : 1 +
+
+ ... +
> n.
2
3
n
155. Cho a = 17 - 1 . Hãy tính giá trị của biểu thức: A = (a5 + 2a4 – 17a3 – a2 + 18a – 17)2000.
156. Chứng minh : a - a - 1 < a - 2 - a - 3 (a ≥ 3)
1
157. Chứng minh : x 2 - x + > 0 (x ≥ 0)
2
158. Tìm giá trị lớn nhất của S = x - 1 + y - 2 , biết x + y = 4.
153. Tính : A =
159. Tính giá trị của biểu thức sau với a =
9
3
1 + 2a
1 - 2a
: A=
+
.
4
1 + 1 + 2a 1 - 1 - 2a
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
160. Chứng minh các đẳng thức sau :
(
)( 10 - 6 ) 4 - 15 = 2
5 ( 3 + 5 )( 10 - 2 ) = 8 d)
a) 4 + 15
c) 3 -
b) 4 2 + 2 6 =
7 + 48 =
2
2
(
2
(
)
3 +1
)
3 + 1 e) 17 - 4 9 + 4 5 = 5 - 2
161. Chứng minh các bất đẳng thức sau :
5+ 5 5- 5
+
- 10 < 0
5- 5 5+ 5
æ
ö
5 +1
5 - 1 öæ
1
c) ç
+
+ 2 ÷ 0, 2 - 1,01 > 0
֍ 3 - 4
3
è 1 + 5 + 3 1 + 3 - 5 øè
ø
2 + 3 -1
2- 3æ
3
3 ö 1
d)
+
+
+ 3- 2 > 0
ç
÷2+ 6
2 6 è 2- 6 2+ 6 ø
2
27 + 6 > 48
a)
2+2
e)
h)
(
3+
b)
2 -1 +
5+
2 -2
)
7 -
(
2 - 1 > 1,9
)
3+ 5+ 7 <3
g)
i)
17 + 12 2 - 2 > 3 - 1
2 + 2 + 3 2- 2
< 0,8
4
1
< 2 n - 2 n - 1 . Từ đó suy ra:
n
1
1
1
2004 < 1 +
+
+ ... +
< 2005
2
3
1006009
2+ 3+ 4
3
163. Trục căn thức ở mẫu : a)
b)
.
2+ 3+ 6+ 8+4
2+ 3 2 + 3 4
3+ 2
3- 2
164. Cho x =
và y=
. Tính A = 5x2 + 6xy + 5y2.
3- 2
3+ 2
2002
2003
165. Chứng minh bất đẳng thức sau :
+
> 2002 + 2003 .
2003
2002
x 2 - 3xy + y 2
166. Tính giá trị của biểu thức : A =
với x = 3 + 5 và y = 3 - 5 .
x+y+2
6x - 3
167. Giải phương trình :
= 3 + 2 x - x2 .
x - 1- x
162. Chứng minh rằng : 2 n + 1 - 2 n <
168. Giải bất các pt :
a) 3 3 + 5x ³ 72
b)
1
10x - 14 ³ 1 c) 2 + 2 2 + 2x ³ 4 .
4
169. Rút gọn các biểu thức sau :
a) A = 5 - 3 - 29 - 12 5
c) C =
10
x + 3 + 2 x2 - 9
2x - 6 + x 2 - 9
b) B = 1 - a + a(a - 1) + a
d) D =
a -1
a
x 2 + 5x + 6 + x 9 - x 2
3x - x 2 + (x + 2) 9 - x 2
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
1
1
1
1
+
- ... 1- 2
2- 3
3- 4
24 - 25
1
170. Tìm GTNN và GTLN của biểu thức A =
.
2 - 3 - x2
2
1
171. Tìm giá trị nhỏ nhất của A =
+
với 0 < x < 1.
1- x x
172. Tìm GTLN của : a) A = x - 1 + y - 2 biết x + y = 4 ;
E=
b) B =
y-2
x -1
+
x
y
173. Cho a = 1997 - 1996 ; b = 1998 - 1997 . So sánh a với b, số nào lớn hơn ?
174. Tìm GTNN, GTLN của :
a) A =
1
5+2 6-x
175. Tìm giá trị lớn nhất của
176. Tìm giá trị lớn nhất của
177. Tìm GTNN, GTLN của
178. Tìm GTNN, GTLN của
179. Giải phương trình :
2
b) B = - x 2 + 2x + 4 .
A = x 1- x2 .
A = | x – y | biết x2 + 4y2 = 1.
A = x3 + y3 biết x, y ≥ 0 ; x2 + y2 = 1.
A = x x + y y biết
x + y = 1.
1 - x + x 2 - 3x + 2 + (x - 2)
x -1
= 3.
x-2
180. Giải phương trình : x 2 + 2x - 9 = 6 + 4x + 2x 2 .
1
1
1
1
+
+
+ ... +
< 2.
2 3 2 4 3
(n + 1) n
1
1
1
1
182. Cho A =
+
+
+ ... +
. Hãy so sánh A và 1,999.
1.1999
2.1998
3.1997
1999.1
183. Cho 3 số x, y và x + y là số hữu tỉ. Chứng minh rằng mỗi số x ; y đều là số
181. CMR, "n Î Z+ , ta có :
hữu tỉ
3+ 2
- 2 6 ; b = 3 + 2 2 + 6 - 4 2 . CMR : a, b là các số hữu tỉ.
3- 2
æ 2+ a
a - 2 ö a a + a - a -1
185. Rút gọn biểu thức : P = ç
÷.
a
è a + 2 a +1 a -1 ø
184. Cho a =
(a >0 ; a ≠ 1)
æ a +1
öæ
a -1
1 ö
+ 4 a ÷ç a ÷ = 4a .
a +1
aø
è a -1
øè
186. Chứng minh : ç
187. Rút gọn :
11
( x + 2)
- 8x
2
xx
(a > 0 ; a ≠ 1)
2
(0 < x < 2)
www.MATHVN.com
WWW.MATHVN.COM
æ
MAI TRỌNG MẬU
b - ab ö æ
a
b
a+bö
+
÷:ç
÷
a + b ø è ab + b
ab - a
ab ø
188. Rút gọn : ç a +
è
(
189. Giải bất phương trình : 2 x + x + a
2
2
)£
5a 2
(a ≠ 0)
x2 + a2
éæ 1 - a a
öæ 1 + a a
öù
190. Cho A = (1 - a 2 ) : êç
+ a ֍
- a ÷ú + 1
êëè 1 - a
øè 1 + a
ø úû
a) Rút gọn biểu thức A.
b) Tính giá trị của A với a = 9.
c) Với giá trị nào của a thì | A | = A.
191. Cho biểu thức : B =
a + b -1
a- bæ
b
b ö
+
+
ç
÷.
a + ab
2 ab è a - ab a + ab ø
b) Tính giá trị của B nếu a = 6 + 2 5 .
a) Rút gọn biểu thức B.
c) So sánh B với -1.
æ
192. Cho A = ç
1
a+b ö
ö æ
:
1
+
ç
÷
÷
a + a+b ø è
a-b ø
1
+
è a - a-b
a) Rút gọn biểu thức A.
b) Tìm b biết | A | = -A.
c) Tính giá trị của A khi a = 5 + 4 2 ; b = 2 + 6 2 .
æ a +1
öæ
a -1
1 ö
+ 4 a ÷ç a ÷
a +1
aø
è a -1
øè
193. Cho biểu thức A = ç
a) Rút gọn biểu thức A.
b) Tìm giá trị của A nếu a =
6
2+ 6
c) Tìm giá trị của a để
.
A > A.
æ a
1 öæ a - a a + a ö
֍
÷.
2
2
a
a
+
1
a
1
è
øè
ø
194. Cho biểu thức A = ç
a) Rút gọn biểu thức A.
b) Tìm giá trị của A để A = - 4
æ 1+ a
1- a
+
1+ a
è 1- a
195. Thực hiện phép tính : A = ç
196. Thực hiện phép tính : B =
2+ 3
2 + 2+ 3
+
ö æ 1+ a
1- a ö
÷:ç
÷
1+ a ø
ø è 1- a
2- 3
2 - 2- 3
197. Rút gọn các biểu thức sau :
é
x - y êæ 1 1 ö
1
a) A =
: ç + ÷.
+
ê
xy xy
è x y ø x + y + 2 xy
ëê
(
ù
æ 1
1 öú
.
+
÷
3 ç
ç
y ÷ø ú
x+ y è x
ûú
2
)
với x = 2 - 3 ; y = 2 + 3 .
b) B =
12
x + x 2 - y2 - x - x 2 - y2
2(x - y)
với x > y > 0
www.MATHVN.com
WWW.MATHVN.COM
c) C =
MAI TRỌNG MẬU
2a 1 + x 2
1+ x2 - x
(a
`d) D = (a + b) e) E =
với x =
2
1 æ 1- a
a ö
ç
÷
2è a
1- a ø
+ 1)( b 2 + 1)
x + 2 x -1 + x - 2 x -1
x + 2x - 1 + x - 2x - 1
x+
0
với a, b, c > 0 và ab + bc + ca = 1
c2 + 1
198. Chứng minh :
;
. 2x - 1
x2 - 4
+
x
x-
x2 - 4
=
x
2x + 4
x
với x ≥ 2.
-1 + 2
-1 - 2
,b=
. Tính a7 + b7.
2
2
200. Cho a = 2 - 1
a) Viết a2 ; a3 dưới dạng m - m - 1 , trong đó m là số tự nhiên.
199. Cho a =
`
b) Chứng minh rằng với mọi số nguyên dương n, số an viết được dưới dạng trên.
201. Cho biết x = 2 là một nghiệm của phương trình x3 + ax2 + bx + c = 0 với các hệ số
hữu tỉ. Tìm các nghiệm còn lại.
202. Chứng minh 2 n - 3 <
203. Tìm phần nguyên của số
1
1
1
+
+ ... +
< 2 n - 2 với nÎ N ; n ≥ 2.
2
3
n
6 + 6 + ... + 6 + 6
204. Cho a = 2 + 3. Tính a)
205. Cho 3 số x, y,
éëa 2 ùû
b)
(có 100 dấu căn).
éëa 3 ùû .
x + y là số hữu tỉ. Chứng minh rằng mỗi số
x , y đều là số hữu
tỉ
1
1
1
1
+
+
+ ... +
<2
2 3 2 4 3
(n + 1) n
1
1
1
1
207. Cho 25 số tự nhiên a1 , a2 , a3 , … a25 thỏa đk :
+
+
+ ... +
=9.
a1
a2
a3
a 25
206. CMR, "n ≥ 1 , n Î N :
Chứng minh rằng trong 25 số tự nhiên đó tồn tại 2 số bằng nhau.
208. Giải phương trình
2+ x
2 + 2+ x
209. Giải và biện luận với tham số a
+
2- x
= 2.
2 - 2- x
1+ x + 1- x
= a.
1+ x - 1- x
ì x (1 + y ) = 2y
ïï
210. Giải hệ phương trình í y (1 + z ) = 2z
ï
ïî z (1 + x ) = 2x
211. Chứng minh rằng :
13
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
(8 + 3 7 ) có 7 chữ số 9 liền sau dấu phẩy.
b) Số ( 7 + 4 3 ) có mười chữ số 9 liền sau dấu phẩy.
7
a) Số
10
n nhất (n Î N*), ví dụ :
1 = 1 Þ a1 = 1 ;
2 » 1, 4 Þ a 2 = 1 ;
3 » 1,7 Þ a 3 = 2 ;
1 1 1
1
Tính :
+ + + ... +
.
a1 a 2 a 3
a1980
212. Kí hiệu an là số nguyên gần
a) a n = 2 + 2 + ... + 2 + 2
213. Tìm phần nguyên của các số (có n dấu căn) :
b) a n = 4 + 4 + ... + 4 + 4
4 = 2 Þ a4 = 2
c) a n = 1996 + 1996 + ... + 1996 + 1996
214. Tìm phần nguyên của A với n Î N : A = 4n 2 + 16n 2 + 8n + 3
215. Chứng minh rằng khi viết số x =
(
3+ 2
)
200
dưới dạng thập phân, ta được chữ số liền
trước dấu phẩy là 1, chữ số liền sau dấu phẩy là 9.
216. Tìm chữ số tận cùng của phần nguyên của
(
3+ 2
)
250
.
217. Tính tổng A = é 1 ù + é 2 ù + é 3 ù + ... + é 24 ù
ë
û ë
û ë
û
ë
û
2
218. Tìm giá trị lớn nhất của A = x (3 – x) với x ≥ 0.
219. Giải phương trình : a) 3 x + 1 + 3 7 - x = 2
x - 2 + x +1 = 3 .
220. Có tồn tại các số hữu tỉ dương a, b không nếu : a) a + b = 2 b) a + b = 4 2 .
221. Chứng minh các số sau là số vô tỉ : a) 3 5
b) 3 2 + 3 4
a+b+c 3
222. Chứng minh bất đẳng thức Cauchy với 3 số không âm :
³ abc .
3
a
b
c
d
1
223. Cho a, b, c, d > 0. Biết
+
+
+
£ 1 . Chứng minh rằng : abcd £ .
1+ a 1+ b 1+ c 1+ d
81
2
2
2
x
y
z
x y z
224. Chứng minh bất đẳng thức : 2 + 2 + 2 ³ + +
với x, y, z > 0
y
z
x
y z x
b)
3
225. Cho a = 3 3 + 3 3 + 3 3 - 3 3 ; b = 2 3 3 . Chứng minh rằng : a < b.
n
æ 1ö
226. a) Chứng minh với mọi số nguyên dương n, ta có : ç1 + ÷ < 3 .
è nø
b) Chứng minh rằng trong các số có dạng n n (n là số tự nhiên), số 3 3 có giá trị lớn nhất
227. Tìm giá trị nhỏ nhất của A = x 2 + x + 1 + x 2 - x + 1 .
228. Tìm giá trị nhỏ nhất của A = x2(2 – x) biết x ≤ 4.
229. Tìm giá trị lớn nhất của A = x 2 9 - x 2 .
230. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = x(x2 – 6) biết 0 ≤ x ≤ 3.
231. Một miếng bìa hình vuông có cạnh 3 dm. Ở mỗi góc của hình vuông lớn, người ta cắt đi
một hình vuông nhỏ rồi gấp bìa để được một cái hộp hình hộp chữ nhật không nắp. Tính cạnh
hình vuông nhỏ để thể tích của hộp là lớn nhất.
14
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
232. Giải các phương trình sau :
a) 1 + 3 x - 16 = 3 x + 3
c)
3
b)
x + 1 + 3 x - 1 = 3 5x
3
2 - x + x -1 = 1
d) 2 3 2x - 1 = x 3 + 1
x 3 - 3x - ( x 2 - 1) x 2 - 4
h)
3
(x + 1) 2 + 3 (x - 1) 2 + 3 x 2 - 1 = 1
k)
4
1- x2 + 4 1+ x + 4 1- x = 3
2
7- x - 3 x -5
g) 3
= 6-x
7- x + 3 x -5
3
= 2- 3
e)
3
i)
l)
4
3
x +1 + 3 x + 2 + 3 x + 3 = 0
a - x + 4 b - x = 4 a + b - 2x (a, b là
tham số)
3
233. Rút gọn A =
a 4 + 3 a 2 b2 + 3 b4
3
a 2 + 3 ab + 3 b 2
.
234. Tìm giá trị nhỏ nhất của biểu thức : A = x 2 - x + 1 + x 2 + x + 1
235. Xác định các số nguyên a, b sao cho một trong các nghiệm của phương trình :
3x3 + ax2 + bx + 12 = 0 là 1 + 3 .
236. Chứng minh
3
3 là số vô tỉ.
237. Làm phép tính : a)
3
1 + 2 .6 3 - 2 2
b)
6
9 + 4 5. 3 2 - 5 .
238. Tính : a = 3 20 + 14 2 + 3 20 - 14 2 .
7 + 5 2 + 3 7 - 2 5 = 2.
239. Chứng minh :
3
240. Tính : A =
7 + 48 - 4 28 - 16 3 . 4 7 + 48 .
(
4
)
241. Hãy lập phương trình f(x) = 0 với hệ số nguyên có một nghiệm là : x = 3 3 + 3 9 .
1
242. Tính giá trị của biểu thức : M = x3 + 3x – 14 với x = 3 7 + 5 2 3
243. Giải các phương trình : a)
b)
3
3
7+5 2
.
x + 2 + 25 - x = 3 .
3
x - 9 = (x - 3) 2 + 6
244. Tìm GTNN của biểu thức : A =
c)
(
x 2 + 32 - 2 4 x 2 + 32 = 3
)
)
(
x3 + 2 1 + x3 + 1 + x3 + 2 1 - x3 + 1 .
245. Cho các số dương a, b, c, d. Chứng minh : a + b + c + d ≥ 4 4 abcd .
8-x
246. Rút gọn : P =
2- 3 x
3
æ
x2
:ç2+
ç
2+ 3 x
è
ö æ3
2 3 x öæ 3 x2 - 4
÷+ç x + 3
÷ çç 3 2
÷
x
2
è
øè x + 2 x
ø
ö
÷;
÷
ø
Voi x > 0 , x ≠ 8
247. CMR : x = 3 5 - 17 + 3 5 + 17 là nghiệm của phương trình x3 – 6x – 10 = 0.
1
248. Cho x =
3
15
4 - 15
+ 3 4 - 15 . Tính giá trị biểu thức y = x3 – 3x + 1987.
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
a + 2 + 5.
249. Chứng minh đẳng thức :
3
9-4 5
= - 3 a -1.
2 - 5 .3 9 + 4 5 - 3 a 2 + 3 a
æ3
ö
9 + 4 5 + 3 2 + 5 ÷ . 3 5 - 2 - 2,1 < 0 .
è
ø
250. Chứng minh bất đẳng thức : ç
251. Rút gọn các biểu thức sau :
æ
ö ç 1+ 23 1
a + a b + b
4b
b
÷ .ç
a) A =
3
÷
3 2
1
3
a + 3 ab + 3 b 2
b + 2 ÷ ç 1 - 2.
3
ç
ø
b
è
æ a 3 a - 2a 3 b + 3 a 2 b 2 3 a 2 b - 3 ab 2 ö 1
c) C = ç
+ 3
÷. 2 .
3
3 2
3
ç
÷ 3a
a
b
a
ab
è
ø
3
4
252. Cho M =
3
2
2
3
4
æ
b
b) ç
ç b +8
ç
è
(
)
ö
÷ 24
÷÷ b +8
÷
ø
x 2 - 4a + 9 + x 2 - 4x + 8 . Tính giá trị của biểu thức M biết rằng:
x 2 - 4x + 9 - x 2 - 4x + 8 = 2 .
253. Tìm giá trị nhỏ nhất của : P = x 2 - 2ax + a 2 + x 2 - 2bx + b 2 (a < b)
254. Chứng minh rằng, nếu a, b, c là độ dài 3 cạnh của một tam giác thì :
abc ≥ (a + b – c)(b + c – a)(c + a – b)
255. Tìm giá trị của biểu thức | x – y | biết x + y = 2 và xy = -1
256. Biết a – b = 2 + 1 , b – c = 2 - 1, tìm giá trị của biểu thức :
A = a2 + b2 + c2 – ab – bc – ca.
257. Tìm x, y, z biết rằng : x + y + z + 4 = 2 x - 2 + 4 y - 3 + 6 z - 5 .
258. Cho y =
số.
x + 2 x - 1 + x - 2 x - 1 . CMR, nếu 1 ≤ x ≤ 2 thì giá tr
MAI TRỌNG MẬU
PHẦN I: ĐỀ BÀI
1. Chứng minh 7 là số vô tỉ.
2. a) Chứng minh : (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki : (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức : S = x2 + y2.
4. a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy :
b) Cho a, b, c > 0. Chứng minh rằng :
a+b
³ ab .
2
bc ca ab
+ +
³a+b+c
a
b
c
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
7. Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c)
8. Tìm liên hệ giữa các số a và b biết rằng : a + b > a - b
9. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh : (a + 1)(b + 1)(c + 1) ≥ 8
10. Chứng minh các bất đẳng thức :
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
11. Tìm các giá trị của x sao cho :
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
12. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị
nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
16. Tìm giá trị lớn nhất của biểu thức : A =
1
x - 4x + 9
2
17. So sánh các số thực sau (không dùng máy tính) :
a) 7 + 15 và 7
b)
c)
23 - 2 19
và
3
27
18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn
d)
17 + 5 + 1 và
3 2 và
45
2 3
2 nhưng nhỏ hơn
3
19. Giải phương trình : 3x 2 + 6x + 7 + 5x 2 + 10x + 21 = 5 - 2x - x 2 .
20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.
1
1
1
1
+
+ .... +
+ ... +
.
1.1998
2.1997
k(1998 - k + 1)
1998 - 1
1998
Hãy so sánh S và 2.
.
1999
22. Chứng minh rằng : Nếu số tự nhiên a không phải là số chính phương thì a là số vô tỉ.
21. Cho S =
23. Cho các số x và y cùng dấu. Chứng minh rằng :
1
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
x y
+ ³2
y x
æ x 2 y2 ö æ x y ö
b) ç 2 + 2 ÷ - ç + ÷ ³ 0
x ø èy xø
èy
a)
æ x 4 y4 ö æ x 2 y2 ö æ x y ö
+ 4 ÷-ç 2 + 2 ÷+ç + ÷ ³ 2.
4
y
x ø èy
x ø èy xø
è
c) ç
24. Chứng minh rằng các số sau là số vô tỉ :
a)
1+ 2
b) m +
3
với m, n là các số hữu tỉ, n ≠ 0.
n
25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không ?
æx yö
x 2 y2
26. Cho các số x và y khác 0. Chứng minh rằng : 2 + 2 + 4 ³ 3 ç + ÷ .
y
x
èy xø
27. Cho các số x, y, z dương. Chứng minh rằng :
x 2 y2 z2 x y z
+ +
³ + + .
y2 z2 x 2 y z x
28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
29. Chứng minh các bất đẳng thức :
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.
31. Chứng minh rằng : [ x ] + [ y ] £ [ x + y ] .
1
.
x - 6x + 17
x y z
33. Tìm giá trị nhỏ nhất của : A = + +
với x, y, z > 0.
y z x
32. Tìm giá trị lớn nhất của biểu thức : A =
2
34. Tìm giá trị nhỏ nhất của : A = x2 + y2 biết x + y = 4.
35. Tìm giá trị lớn nhất của : A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0 ; x + y + z = 1.
36. Xét xem các số a và b có thể là số vô tỉ không nếu :
a
là số vô tỉ.
b
a
b) a + b và
là số hữu tỉ (a + b ≠ 0)
b
a) ab và
c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)
37. Cho a, b, c > 0. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c)
a
b
c
d
+
+
+
³2
b+c c+d d+a a +b
39. Chứng minh rằng [ 2x ] bằng 2 [ x ] hoặc 2 [ x ] + 1
38. Cho a, b, c, d > 0. Chứng minh :
40. Cho số nguyên dương a. Xét các số có dạng : a + 15 ; a + 30 ; a + 45 ; … ; a + 15n.
Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
41. Tìm các giá trị của x để các biểu thức sau có nghĩa :
2
www.MATHVN.com
WWW.MATHVN.COM
A= x 2 - 3
B=
MAI TRỌNG MẬU
1
x 2 + 4x - 5
C=
1
D=
x - 2x - 1
1
E= x+
1- x2 - 3
2
+ -2x
x
G = 3x - 1 - 5x - 3 + x 2 + x + 1
42. a) Chứng minh rằng : | A + B | ≤ | A | + | B | . Dấu “ = ” xảy ra khi nào ?
b) Tìm giá trị nhỏ nhất của biểu thức sau : M =
x 2 + 4x + 4 + x 2 - 6x + 9 .
4x 2 + 20x + 25 + x 2 - 8x + 16 = x 2 + 18x + 81
c) Giải phương trình :
43. Giải phương trình : 2x 2 - 8x - 3 x 2 - 4x - 5 = 12 .
44. Tìm các giá trị của x để các biểu thức sau có nghĩa :
A = x2 + x + 2
E=
B=
1
G=
2x + 1 + x
45. Giải phương trình :
1
1 - 3x
C = 2 - 1 - 9x 2
x
+ x-2
x -4
1
D=
x 2 - 5x + 6
H = x 2 - 2x - 3 + 3 1 - x 2
2
x 2 - 3x
=0
x -3
46. Tìm giá trị nhỏ nhất của biểu thức : A =
x +x.
47. Tìm giá trị lớn nhất của biểu thức : B = 3 - x + x
3 +1
48. So sánh : a) a = 2 + 3 và b=
b) 5 - 13 + 4 3 và
2
c) n + 2 - n + 1 và n+1 - n (n là số nguyên dương)
3 -1
49. Với giá trị nào của x, biểu thức sau đạt giá trị nhỏ nhất : A = 1 - 1 - 6x + 9x 2 + (3x - 1) 2 .
50. Tính : a)
4-2 3
b)
11 + 6 2
d) A = m 2 + 8m + 16 + m 2 - 8m + 16
c)
27 - 10 2
e) B = n + 2 n - 1 + n - 2 n - 1 (n
≥ 1)
51. Rút gọn biểu thức : M =
8 41
45 + 4 41 + 45 - 4 41
.
52. Tìm các số x, y, z thỏa mãn đẳng thức : (2x - y) 2 + (y - 2)2 + (x + y + z) 2 = 0
53. Tìm giá trị nhỏ nhất của biểu thức : P = 25x 2 - 20x + 4 + 25x 2 - 30x + 9 .
54. Giải các phương trình sau :
a) x 2 - x - 2 - x - 2 = 0
d) x - x 4 - 2x 2 + 1 = 1
b) x 2 - 1 + 1 = x 2
e) x 2 + 4x + 4 + x - 4 = 0
h) x 2 - 2x + 1 + x 2 - 6x + 9 = 1
k) x + 3 - 4 x - 1 + x + 8 - 6 x - 1 = 1
3
c) x 2 - x + x 2 + x - 2 = 0
g) x - 2 + x - 3 = -5
i) x + 5 + 2 - x = x 2 - 25
l) 8x + 1 + 3x - 5 = 7x + 4 + 2x - 2
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
55. Cho hai số thực x và y thỏa mãn các điều kiện : xy = 1 và x > y. CMR:
x 2 + y2
³2 2.
x-y
56. Rút gọn các biểu thức :
a) 13 + 30 2 + 9 + 4 2
b) m + 2 m - 1 + m - 2 m - 1
c) 2 + 3. 2 + 2 + 3 . 2 + 2 + 2 + 3 . 2 - 2 + 2 + 3
2+ 3 =
57. Chứng minh rằng
58. Rút gọn các biểu thức :
a) C =
6+2
(
d) 227 - 30 2 + 123 + 22 2
6
2
+
.
2
2
)
6 + 3 + 2 - 6-2
(
6- 3+ 2
)
9-6 2 - 6
.
3
b) D =
2
59. So sánh :
a)
6 + 20 và 1+ 6
b)
17 + 12 2 và
2 +1
c)
28 - 16 3 và 3 - 2
60. Cho biểu thức : A = x - x 2 - 4x + 4
a) Tìm tập xác định của biểu thức A.
b) Rút gọn biểu thức A.
61. Rút gọn các biểu thức sau : a)
c)
11 - 2 10
b)
9 - 2 14
3 + 11 + 6 2 - 5 + 2 6
2 + 6 + 2 5 - 7 + 2 10
62. Cho a + b + c = 0 ; a, b, c ≠ 0. Chứng minh đẳng thức :
63. Giải bất phương trình :
1 1 1
1 1 1
+ 2+ 2 = + +
2
a
b
c
a b c
x 2 - 16x + 60 < x - 6 .
64. Tìm x sao cho : x 2 - 3 + 3 £ x 2 .
65. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = x2 + y2 , biết rằng :
x2(x2 + 2y2 – 3) + (y2 – 2)2 = 1 (1)
66. Tìm x để biểu thức có nghĩa:
a) A =
1
x - 2x - 1
67. Cho biểu thức : A =
16 - x 2
b) B =
+ x 2 - 8x + 8 .
2x + 1
x + x 2 - 2x
x - x - 2x
2
-
x - x 2 - 2x
x + x - 2x
2
.
a) Tìm giá trị của x để biểu thức A có nghĩa.
b) Rút gọn biểu thức A. c) Tìm giá trị của x để A < 2.
68. Tìm 20 chữ số thập phân đầu tiên của số : 0,9999....9 (20 chữ số 9)
69. Tìm giá trị nhỏ nhất, giá trị lớn nhất của : A = | x - 2 | + | y – 1 | với | x | + | y | = 5
70. Tìm giá trị nhỏ nhất của A = x4 + y4 + z4 biết rằng xy + yz + zx = 1
71. Trong hai số : n + n + 2 và 2 n+1 (n là số nguyên dương), số nào lớn hơn ?
4
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
72. Cho biểu thức A = 7 + 4 3 + 7 - 4 3 . Tính giá trị của A theo hai cách.
73. Tính : ( 2 + 3 + 5)( 2 + 3 - 5)( 2 - 3 + 5)(- 2 + 3 + 5)
74. Chứng minh các số sau là số vô tỉ :
3+ 5 ;
3- 2 ; 2 2 +3
75. Hãy so sánh hai số : a = 3 3 - 3 và b=2 2 - 1 ;
76. So sánh
2 + 5 và
5 +1
2
4 + 7 - 4 - 7 - 2 và số 0.
2+ 3+ 6+ 8+4
.
2+ 3+ 4
77. Rút gọn biểu thức : Q =
78. Cho P = 14 + 40 + 56 + 140 . Hãy biểu diễn P dưới dạng tổng của 3 căn thức bậc hai
79. Tính giá trị của biểu thức x2 + y2 biết rằng : x 1 - y 2 + y 1 - x 2 = 1 .
80. Tìm giá trị nhỏ nhất và lớn nhất của : A = 1 - x + 1 + x .
81. Tìm giá trị lớn nhất của : M =
(
a+ b
)
2
với a, b > 0 và a + b ≤ 1.
82. CMR trong các số 2b + c - 2 ad ; 2c + d - 2 ab ; 2d + a - 2 bc ; 2a + b - 2 cd có ít
nhất hai số dương (a, b, c, d > 0).
83. Rút gọn biểu thức : N = 4 6 + 8 3 + 4 2 + 18 .
84. Cho x + y + z = xy + yz + zx , trong đó x, y, z > 0. Chứng minh x = y = z.
85. Cho a1, a2, …, an > 0 và a1a2…an = 1. Chứng minh: (1 + a1)(1 + a2)…(1 + an) ≥ 2n.
86. Chứng minh :
(
a+ b
)
2
³ 2 2(a + b) ab
(a, b ≥ 0).
87. Chứng minh rằng nếu các đoạn thẳng có độ dài a, b, c lập được thành một tam giác thì các
đoạn thẳng có độ dài a , b , c cũng lập được thành một tam giác.
(x + 2) 2 - 8x
.
2
xx
2
a +2
89. Chứng minh rằng với mọi số thực a, ta đều có :
³ 2 . Khi nào có đẳng thức ?
2
a +1
88. Rút gọn : a) A =
ab - b 2
a
b
b
b) B =
90. Tính : A = 3 + 5 + 3 - 5 bằng hai cách.
91. So sánh : a)
92. Tính : P =
3 7 +5 2
và 6,9
b)
5
2+ 3
2- 3
+
.
2 + 2+ 3
2 - 2- 3
13 - 12 và
7- 6
x + 2 + 3 2x - 5 + x - 2 - 2x - 5 = 2 2 .
1.3.5...(2n - 1)
1
94. Chứng minh rằng ta luôn có : Pn =
<
; "n Î Z+
2.4.6...2n
2n + 1
93. Giải phương trình :
5
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
a2
b2
a+ b£
+
.
b
a
95. Chứng minh rằng nếu a, b > 0 thì
96. Rút gọn biểu thức :
A=
x - 4(x - 1) + x + 4(x - 1) æ
1 ö
.ç1 ÷.
è x -1 ø
x 2 - 4(x - 1)
a b +b a
1
:
= a - b (a, b > 0 ; a ≠ b)
ab
a- b
æ 14 - 7
æ a + a öæ a - a ö
15 - 5 ö
1
b) ç
+
= -2
c) ç 1 +
÷:
÷ç 1 ÷ = 1 - a (a >
1- 3 ø 7 - 5
a + 1 øè
a -1 ø
è 1- 2
è
97. Chứng minh các đẳng thức sau : a)
0).
5 - 3 - 29 - 6 20
98. Tính : a)
æ
c) ç
è
; b) 2 3 + 5 - 13 + 48 .
ö
28 - 16 3 ÷ . 7 + 48 .
ø
99. So sánh : a) 3 + 5 và 15
b) 2 + 15 và 12 + 7
16
c) 18 + 19 và 9
d)
và 5. 25
2
7 + 48 -
100. Cho hằng đẳng thức :
a± b =
a + a2 - b
a - a2 - b
±
(a, b > 0 và a2 – b > 0).
2
2
Áp dụng kết quả để rút gọn :
a)
c)
2+ 3
2 + 2+ 3
+
2- 3
2 - 2- 3
; b)
3- 2 2
17 - 12 2
-
3+ 2 2
17 + 12 2
2 10 + 30 - 2 2 - 6
2
:
2 10 - 2 2
3 -1
101. Xác định giá trị các biểu thức sau :
a) A =
b) B =
xy - x 2 - 1. y 2 - 1
xy + x 2 - 1. y 2 - 1
a + bx + a - bx
a + bx - a - bx
với x =
với x =
1æ
1ö
ça + ÷ , y =
2è
aø
1æ
1ö
ç b + ÷ (a > 1 ; b > 1)
2è
bø
2am
, m < 1.
b (1 + m 2 )
2x - x 2 - 1
102. Cho biểu thức P(x) =
3x 2 - 4x + 1
a) Tìm tất cả các giá trị của x để P(x) xác định. Rút gọn P(x).
b) Chứng minh rằng nếu x > 1 thì P(x).P(- x) < 0.
103. Cho biểu thức A =
6
x+2-4 x -2 + x +2+4 x -2
.
4 4
- +1
x2 x
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
a) Rút gọn biểu thức A.
b) Tìm các số nguyên x để biểu thức A là một số nguyên.
104. Tìm giá trị lớn nhất (nếu có) hoặc giá trị nhỏ nhất (nếu có) của các biểu thức sau:
a) 9 - x 2
e) 1 - 2 1 - 3x
b) x - x (x > 0)
c) 1 + 2 - x
g) 2x 2 - 2x + 5
105. Rút gọn biểu thức : A =
h) 1 - - x 2 + 2x + 5
x + 2x - 1 - x - 2x - 1 , bằng ba cách ?
5 3 + 5 48 - 10 7 + 4 3
106. Rút gọn các biểu thức sau : a)
b)
4 + 10 + 2 5 + 4 - 10 + 2 5
c)
107. Chứng minh các hằng đẳng thức với b ≥ 0 ; a ≥
(
)
a)
a + b ± a - b = 2 a ± a2 - b
b)
a + a2 - b
a - a2 - b
a± b =
±
2
2
108. Rút gọn biểu thức : A =
109. Tìm x và y sao cho :
d) x - 5 - 4
1
i)
2x - x + 3
94 - 42 5 - 94 + 42 5 .
b
x + 2 2x - 4 + x - 2 2x - 4
x+y-2 = x + y - 2
110. Chứng minh bất đẳng thức :
a 2 + b2 + c2 + d 2 ³
(a + c)
2
+ (b + d) .
2
a2
b2
c2
a+b+c
111. Cho a, b, c > 0. Chứng minh :
+
+
³
.
b+c c+a a +b
2
112. Cho a, b, c > 0 ; a + b + c = 1. Chứng minh :
a)
a + 1 + b + 1 + c + 1 < 3,5
113. CM :
(a
2
+ c 2 )( b 2 + c2 ) +
b)
(a
2
a +b + b+c + c+a £ 6 .
+ d 2 )( b 2 + d 2 ) ³ (a + b)(c + d) với a, b, c, d > 0.
114. Tìm giá trị nhỏ nhất của : A = x + x .
115. Tìm giá trị nhỏ nhất của : A =
(x + a)(x + b)
.
x
116. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = 2x + 3y biết 2x2 + 3y2 ≤ 5.
117. Tìm giá trị lớn nhất của A = x + 2 - x .
118. Giải phương trình :
x - 1 - 5x - 1 = 3x - 2
119. Giải phương trình :
x + 2 x -1 + x - 2 x -1 = 2
120. Giải phương trình : 3x 2 + 21x + 18 + 2 x 2 + 7x + 7 = 2
3x 2 + 6x + 7 + 5x 2 + 10x + 14 = 4 - 2x - x 2
122. Chứng minh các số sau là số vô tỉ : 3 - 2
;
2 2+ 3
121. Giải phương trình :
123. Chứng minh x - 2 + 4 - x £ 2 .
124. Chứng minh bất đẳng thức sau bằng phương pháp hình học :
a 2 + b 2 . b 2 + c 2 ³ b(a + c)
7
với a, b, c > 0.
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
125. Chứng minh (a + b)(c + d) ³ ac + bd với a, b, c, d > 0.
126. Chứng minh rằng nếu các đoạn thẳng có độ dài a, b, c lập được thành một tam giác thì các
đoạn thẳng có độ dài a , b , c cũng lập được thành một tam giác.
(a + b)2 a + b
127. Chứng minh
+
³ a b + b a với a, b ≥ 0.
2
4
a
b
c
128. Chứng minh
+
+
> 2 với a, b, c > 0.
b+c
a+c
a+b
129. Cho x 1 - y 2 + y 1 - x 2 = 1 . Chứng minh rằng x2 + y2 = 1.
130. Tìm giá trị nhỏ nhất của A =
x - 2 x -1 + x + 2 x -1
131. Tìm GTNN, GTLN của A = 1 - x + 1 + x .
132. Tìm giá trị nhỏ nhất của A =
x 2 + 1 + x 2 - 2x + 5
133. Tìm giá trị nhỏ nhất của A = - x 2 + 4x + 12 - - x 2 + 2x + 3 .
134. Tìm GTNN, GTLN của : a) A = 2x + 5 - x 2
(
b) A = x 99 + 101 - x 2
135. Tìm GTNN của A = x + y biết x, y > 0 thỏa mãn
)
a b
+ = 1 (a và b là hằng số dương).
x y
136. Tìm GTNN của A = (x + y)(x + z) với x, y, z > 0 , xyz(x + y + z) = 1.
xy yz zx
+ +
với x, y, z > 0 , x + y + z = 1.
z
x
y
x2
y2
z2
138. Tìm GTNN của A =
+
+
biết x, y, z > 0 , xy + yz + zx = 1 .
x+y y+z z+x
137. Tìm GTNN của A =
139. Tìm giá trị lớn nhất của : a) A =
b) B =
(
a+ b
) (
4
+
a+ c
) (
4
+
(
a+ b
a+ d
)
2
với a, b > 0 , a + b ≤ 1
) (
4
+
b+ c
) (
4
+
b+ d
) (
4
+
c+ d
)
4
với a, b, c, d > 0 và a + b + c + d = 1.
140. Tìm giá trị nhỏ nhất của A = 3x + 3y với x + y = 4.
b
c
+
với b + c ≥ a + d ; b, c > 0 ; a, d ≥ 0.
c+d a+b
141. Tìm GTNN của A =
142. Giải các phương trình sau :
a) x 2 - 5x - 2 3x + 12 = 0
d) x - 1 - x + 1 = 2
b) x 2 - 4x = 8 x - 1
e) x - 2 x - 1 - x - 1 = 1
h) x + 2 - 4 x - 2 + x + 7 - 6 x - 2 = 1
k) 1 - x 2 - x = x - 1
m) x 2 + 6 = x - 2 x 2 - 1
o) x - 1 + x + 3 + 2
8
c) 4x + 1 - 3x + 4 = 1
g) x + 2x - 1 + x - 2x - 1 = 2
i) x + x + 1 - x = 1
l) 2x 2 + 8x + 6 + x 2 - 1 = 2x + 2
n) x + 1 + x + 10 = x + 2 + x + 5
( x - 1) ( x 2 - 3x + 5) = 4 - 2x
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
p) 2x + 3 + x + 2 + 2x + 2 - x + 2 = 1 + 2 x + 2 .
q) 2x 2 - 9x + 4 + 3 2x - 1 = 2x 2 + 21x - 11
(
143. Rút gọn biểu thức : A = 2 2 - 5 + 3 2
)(
144. Chứng minh rằng, "n Î Z+ , ta luôn có : 1 +
145. Trục căn thức ở mẫu : a)
1
1+ 2 + 5
)
18 - 20 + 2 2 .
(
)
1
1
1
+
+ .... +
> 2 n +1 -1 .
2
3
n
1
b)
.
x + x +1
146. Tính :
5 - 3 - 29 - 6 20
a)
(
147. Cho a = 3 - 5 . 3 + 5
148. Cho b =
a)
c)
(
3- 2 2
17 - 12 2
-
b) 6 + 2 5 - 13 + 48
)(
)
17 + 12 2
149. Giải các phương trình sau :
)
(5 - x )
5 - x + ( x - 3) x - 3
5- x + x -3
b)
=2
5 - 3 - 29 - 12 5
10 - 2 . Chứng minh rằng a là số tự nhiên.
3+ 2 2
3 -1 x - x + 4 - 3 = 0
c)
(
. b có phải là số tự nhiên không ?
)
3 -1 x = 2
(
)
3 +1 x - 3 3
d) x + x - 5 = 5
150. Tính giá trị của biểu thức :
M = 12 5 - 29 + 25 + 4 21 - 12 5 + 29 - 25 - 4 21
1
1
1
1
+
+
+ ... +
.
1+ 2
2+ 3
3+ 4
n -1 + n
1
1
1
1
152. Cho biểu thức : P =
+
- ... +
2- 3
3- 4
4- 5
2n - 2n + 1
151. Rút gọn : A =
a) Rút gọn P.
b) P có phải là số hữu tỉ không ?
1
1
1
1
+
+
+ ... +
.
2 1 +1 2 3 2 + 2 3 4 3 + 3 4
100 99 + 99 100
1
1
1
154. Chứng minh : 1 +
+
+ ... +
> n.
2
3
n
155. Cho a = 17 - 1 . Hãy tính giá trị của biểu thức: A = (a5 + 2a4 – 17a3 – a2 + 18a – 17)2000.
156. Chứng minh : a - a - 1 < a - 2 - a - 3 (a ≥ 3)
1
157. Chứng minh : x 2 - x + > 0 (x ≥ 0)
2
158. Tìm giá trị lớn nhất của S = x - 1 + y - 2 , biết x + y = 4.
153. Tính : A =
159. Tính giá trị của biểu thức sau với a =
9
3
1 + 2a
1 - 2a
: A=
+
.
4
1 + 1 + 2a 1 - 1 - 2a
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
160. Chứng minh các đẳng thức sau :
(
)( 10 - 6 ) 4 - 15 = 2
5 ( 3 + 5 )( 10 - 2 ) = 8 d)
a) 4 + 15
c) 3 -
b) 4 2 + 2 6 =
7 + 48 =
2
2
(
2
(
)
3 +1
)
3 + 1 e) 17 - 4 9 + 4 5 = 5 - 2
161. Chứng minh các bất đẳng thức sau :
5+ 5 5- 5
+
- 10 < 0
5- 5 5+ 5
æ
ö
5 +1
5 - 1 öæ
1
c) ç
+
+ 2 ÷ 0, 2 - 1,01 > 0
֍ 3 - 4
3
è 1 + 5 + 3 1 + 3 - 5 øè
ø
2 + 3 -1
2- 3æ
3
3 ö 1
d)
+
+
+ 3- 2 > 0
ç
÷2+ 6
2 6 è 2- 6 2+ 6 ø
2
27 + 6 > 48
a)
2+2
e)
h)
(
3+
b)
2 -1 +
5+
2 -2
)
7 -
(
2 - 1 > 1,9
)
3+ 5+ 7 <3
g)
i)
17 + 12 2 - 2 > 3 - 1
2 + 2 + 3 2- 2
< 0,8
4
1
< 2 n - 2 n - 1 . Từ đó suy ra:
n
1
1
1
2004 < 1 +
+
+ ... +
< 2005
2
3
1006009
2+ 3+ 4
3
163. Trục căn thức ở mẫu : a)
b)
.
2+ 3+ 6+ 8+4
2+ 3 2 + 3 4
3+ 2
3- 2
164. Cho x =
và y=
. Tính A = 5x2 + 6xy + 5y2.
3- 2
3+ 2
2002
2003
165. Chứng minh bất đẳng thức sau :
+
> 2002 + 2003 .
2003
2002
x 2 - 3xy + y 2
166. Tính giá trị của biểu thức : A =
với x = 3 + 5 và y = 3 - 5 .
x+y+2
6x - 3
167. Giải phương trình :
= 3 + 2 x - x2 .
x - 1- x
162. Chứng minh rằng : 2 n + 1 - 2 n <
168. Giải bất các pt :
a) 3 3 + 5x ³ 72
b)
1
10x - 14 ³ 1 c) 2 + 2 2 + 2x ³ 4 .
4
169. Rút gọn các biểu thức sau :
a) A = 5 - 3 - 29 - 12 5
c) C =
10
x + 3 + 2 x2 - 9
2x - 6 + x 2 - 9
b) B = 1 - a + a(a - 1) + a
d) D =
a -1
a
x 2 + 5x + 6 + x 9 - x 2
3x - x 2 + (x + 2) 9 - x 2
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
1
1
1
1
+
- ... 1- 2
2- 3
3- 4
24 - 25
1
170. Tìm GTNN và GTLN của biểu thức A =
.
2 - 3 - x2
2
1
171. Tìm giá trị nhỏ nhất của A =
+
với 0 < x < 1.
1- x x
172. Tìm GTLN của : a) A = x - 1 + y - 2 biết x + y = 4 ;
E=
b) B =
y-2
x -1
+
x
y
173. Cho a = 1997 - 1996 ; b = 1998 - 1997 . So sánh a với b, số nào lớn hơn ?
174. Tìm GTNN, GTLN của :
a) A =
1
5+2 6-x
175. Tìm giá trị lớn nhất của
176. Tìm giá trị lớn nhất của
177. Tìm GTNN, GTLN của
178. Tìm GTNN, GTLN của
179. Giải phương trình :
2
b) B = - x 2 + 2x + 4 .
A = x 1- x2 .
A = | x – y | biết x2 + 4y2 = 1.
A = x3 + y3 biết x, y ≥ 0 ; x2 + y2 = 1.
A = x x + y y biết
x + y = 1.
1 - x + x 2 - 3x + 2 + (x - 2)
x -1
= 3.
x-2
180. Giải phương trình : x 2 + 2x - 9 = 6 + 4x + 2x 2 .
1
1
1
1
+
+
+ ... +
< 2.
2 3 2 4 3
(n + 1) n
1
1
1
1
182. Cho A =
+
+
+ ... +
. Hãy so sánh A và 1,999.
1.1999
2.1998
3.1997
1999.1
183. Cho 3 số x, y và x + y là số hữu tỉ. Chứng minh rằng mỗi số x ; y đều là số
181. CMR, "n Î Z+ , ta có :
hữu tỉ
3+ 2
- 2 6 ; b = 3 + 2 2 + 6 - 4 2 . CMR : a, b là các số hữu tỉ.
3- 2
æ 2+ a
a - 2 ö a a + a - a -1
185. Rút gọn biểu thức : P = ç
÷.
a
è a + 2 a +1 a -1 ø
184. Cho a =
(a >0 ; a ≠ 1)
æ a +1
öæ
a -1
1 ö
+ 4 a ÷ç a ÷ = 4a .
a +1
aø
è a -1
øè
186. Chứng minh : ç
187. Rút gọn :
11
( x + 2)
- 8x
2
xx
(a > 0 ; a ≠ 1)
2
(0 < x < 2)
www.MATHVN.com
WWW.MATHVN.COM
æ
MAI TRỌNG MẬU
b - ab ö æ
a
b
a+bö
+
÷:ç
÷
a + b ø è ab + b
ab - a
ab ø
188. Rút gọn : ç a +
è
(
189. Giải bất phương trình : 2 x + x + a
2
2
)£
5a 2
(a ≠ 0)
x2 + a2
éæ 1 - a a
öæ 1 + a a
öù
190. Cho A = (1 - a 2 ) : êç
+ a ֍
- a ÷ú + 1
êëè 1 - a
øè 1 + a
ø úû
a) Rút gọn biểu thức A.
b) Tính giá trị của A với a = 9.
c) Với giá trị nào của a thì | A | = A.
191. Cho biểu thức : B =
a + b -1
a- bæ
b
b ö
+
+
ç
÷.
a + ab
2 ab è a - ab a + ab ø
b) Tính giá trị của B nếu a = 6 + 2 5 .
a) Rút gọn biểu thức B.
c) So sánh B với -1.
æ
192. Cho A = ç
1
a+b ö
ö æ
:
1
+
ç
÷
÷
a + a+b ø è
a-b ø
1
+
è a - a-b
a) Rút gọn biểu thức A.
b) Tìm b biết | A | = -A.
c) Tính giá trị của A khi a = 5 + 4 2 ; b = 2 + 6 2 .
æ a +1
öæ
a -1
1 ö
+ 4 a ÷ç a ÷
a +1
aø
è a -1
øè
193. Cho biểu thức A = ç
a) Rút gọn biểu thức A.
b) Tìm giá trị của A nếu a =
6
2+ 6
c) Tìm giá trị của a để
.
A > A.
æ a
1 öæ a - a a + a ö
֍
÷.
2
2
a
a
+
1
a
1
è
øè
ø
194. Cho biểu thức A = ç
a) Rút gọn biểu thức A.
b) Tìm giá trị của A để A = - 4
æ 1+ a
1- a
+
1+ a
è 1- a
195. Thực hiện phép tính : A = ç
196. Thực hiện phép tính : B =
2+ 3
2 + 2+ 3
+
ö æ 1+ a
1- a ö
÷:ç
÷
1+ a ø
ø è 1- a
2- 3
2 - 2- 3
197. Rút gọn các biểu thức sau :
é
x - y êæ 1 1 ö
1
a) A =
: ç + ÷.
+
ê
xy xy
è x y ø x + y + 2 xy
ëê
(
ù
æ 1
1 öú
.
+
÷
3 ç
ç
y ÷ø ú
x+ y è x
ûú
2
)
với x = 2 - 3 ; y = 2 + 3 .
b) B =
12
x + x 2 - y2 - x - x 2 - y2
2(x - y)
với x > y > 0
www.MATHVN.com
WWW.MATHVN.COM
c) C =
MAI TRỌNG MẬU
2a 1 + x 2
1+ x2 - x
(a
`d) D = (a + b) e) E =
với x =
2
1 æ 1- a
a ö
ç
÷
2è a
1- a ø
+ 1)( b 2 + 1)
x + 2 x -1 + x - 2 x -1
x + 2x - 1 + x - 2x - 1
x+
0
với a, b, c > 0 và ab + bc + ca = 1
c2 + 1
198. Chứng minh :
;
. 2x - 1
x2 - 4
+
x
x-
x2 - 4
=
x
2x + 4
x
với x ≥ 2.
-1 + 2
-1 - 2
,b=
. Tính a7 + b7.
2
2
200. Cho a = 2 - 1
a) Viết a2 ; a3 dưới dạng m - m - 1 , trong đó m là số tự nhiên.
199. Cho a =
`
b) Chứng minh rằng với mọi số nguyên dương n, số an viết được dưới dạng trên.
201. Cho biết x = 2 là một nghiệm của phương trình x3 + ax2 + bx + c = 0 với các hệ số
hữu tỉ. Tìm các nghiệm còn lại.
202. Chứng minh 2 n - 3 <
203. Tìm phần nguyên của số
1
1
1
+
+ ... +
< 2 n - 2 với nÎ N ; n ≥ 2.
2
3
n
6 + 6 + ... + 6 + 6
204. Cho a = 2 + 3. Tính a)
205. Cho 3 số x, y,
éëa 2 ùû
b)
(có 100 dấu căn).
éëa 3 ùû .
x + y là số hữu tỉ. Chứng minh rằng mỗi số
x , y đều là số hữu
tỉ
1
1
1
1
+
+
+ ... +
<2
2 3 2 4 3
(n + 1) n
1
1
1
1
207. Cho 25 số tự nhiên a1 , a2 , a3 , … a25 thỏa đk :
+
+
+ ... +
=9.
a1
a2
a3
a 25
206. CMR, "n ≥ 1 , n Î N :
Chứng minh rằng trong 25 số tự nhiên đó tồn tại 2 số bằng nhau.
208. Giải phương trình
2+ x
2 + 2+ x
209. Giải và biện luận với tham số a
+
2- x
= 2.
2 - 2- x
1+ x + 1- x
= a.
1+ x - 1- x
ì x (1 + y ) = 2y
ïï
210. Giải hệ phương trình í y (1 + z ) = 2z
ï
ïî z (1 + x ) = 2x
211. Chứng minh rằng :
13
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
(8 + 3 7 ) có 7 chữ số 9 liền sau dấu phẩy.
b) Số ( 7 + 4 3 ) có mười chữ số 9 liền sau dấu phẩy.
7
a) Số
10
n nhất (n Î N*), ví dụ :
1 = 1 Þ a1 = 1 ;
2 » 1, 4 Þ a 2 = 1 ;
3 » 1,7 Þ a 3 = 2 ;
1 1 1
1
Tính :
+ + + ... +
.
a1 a 2 a 3
a1980
212. Kí hiệu an là số nguyên gần
a) a n = 2 + 2 + ... + 2 + 2
213. Tìm phần nguyên của các số (có n dấu căn) :
b) a n = 4 + 4 + ... + 4 + 4
4 = 2 Þ a4 = 2
c) a n = 1996 + 1996 + ... + 1996 + 1996
214. Tìm phần nguyên của A với n Î N : A = 4n 2 + 16n 2 + 8n + 3
215. Chứng minh rằng khi viết số x =
(
3+ 2
)
200
dưới dạng thập phân, ta được chữ số liền
trước dấu phẩy là 1, chữ số liền sau dấu phẩy là 9.
216. Tìm chữ số tận cùng của phần nguyên của
(
3+ 2
)
250
.
217. Tính tổng A = é 1 ù + é 2 ù + é 3 ù + ... + é 24 ù
ë
û ë
û ë
û
ë
û
2
218. Tìm giá trị lớn nhất của A = x (3 – x) với x ≥ 0.
219. Giải phương trình : a) 3 x + 1 + 3 7 - x = 2
x - 2 + x +1 = 3 .
220. Có tồn tại các số hữu tỉ dương a, b không nếu : a) a + b = 2 b) a + b = 4 2 .
221. Chứng minh các số sau là số vô tỉ : a) 3 5
b) 3 2 + 3 4
a+b+c 3
222. Chứng minh bất đẳng thức Cauchy với 3 số không âm :
³ abc .
3
a
b
c
d
1
223. Cho a, b, c, d > 0. Biết
+
+
+
£ 1 . Chứng minh rằng : abcd £ .
1+ a 1+ b 1+ c 1+ d
81
2
2
2
x
y
z
x y z
224. Chứng minh bất đẳng thức : 2 + 2 + 2 ³ + +
với x, y, z > 0
y
z
x
y z x
b)
3
225. Cho a = 3 3 + 3 3 + 3 3 - 3 3 ; b = 2 3 3 . Chứng minh rằng : a < b.
n
æ 1ö
226. a) Chứng minh với mọi số nguyên dương n, ta có : ç1 + ÷ < 3 .
è nø
b) Chứng minh rằng trong các số có dạng n n (n là số tự nhiên), số 3 3 có giá trị lớn nhất
227. Tìm giá trị nhỏ nhất của A = x 2 + x + 1 + x 2 - x + 1 .
228. Tìm giá trị nhỏ nhất của A = x2(2 – x) biết x ≤ 4.
229. Tìm giá trị lớn nhất của A = x 2 9 - x 2 .
230. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = x(x2 – 6) biết 0 ≤ x ≤ 3.
231. Một miếng bìa hình vuông có cạnh 3 dm. Ở mỗi góc của hình vuông lớn, người ta cắt đi
một hình vuông nhỏ rồi gấp bìa để được một cái hộp hình hộp chữ nhật không nắp. Tính cạnh
hình vuông nhỏ để thể tích của hộp là lớn nhất.
14
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
232. Giải các phương trình sau :
a) 1 + 3 x - 16 = 3 x + 3
c)
3
b)
x + 1 + 3 x - 1 = 3 5x
3
2 - x + x -1 = 1
d) 2 3 2x - 1 = x 3 + 1
x 3 - 3x - ( x 2 - 1) x 2 - 4
h)
3
(x + 1) 2 + 3 (x - 1) 2 + 3 x 2 - 1 = 1
k)
4
1- x2 + 4 1+ x + 4 1- x = 3
2
7- x - 3 x -5
g) 3
= 6-x
7- x + 3 x -5
3
= 2- 3
e)
3
i)
l)
4
3
x +1 + 3 x + 2 + 3 x + 3 = 0
a - x + 4 b - x = 4 a + b - 2x (a, b là
tham số)
3
233. Rút gọn A =
a 4 + 3 a 2 b2 + 3 b4
3
a 2 + 3 ab + 3 b 2
.
234. Tìm giá trị nhỏ nhất của biểu thức : A = x 2 - x + 1 + x 2 + x + 1
235. Xác định các số nguyên a, b sao cho một trong các nghiệm của phương trình :
3x3 + ax2 + bx + 12 = 0 là 1 + 3 .
236. Chứng minh
3
3 là số vô tỉ.
237. Làm phép tính : a)
3
1 + 2 .6 3 - 2 2
b)
6
9 + 4 5. 3 2 - 5 .
238. Tính : a = 3 20 + 14 2 + 3 20 - 14 2 .
7 + 5 2 + 3 7 - 2 5 = 2.
239. Chứng minh :
3
240. Tính : A =
7 + 48 - 4 28 - 16 3 . 4 7 + 48 .
(
4
)
241. Hãy lập phương trình f(x) = 0 với hệ số nguyên có một nghiệm là : x = 3 3 + 3 9 .
1
242. Tính giá trị của biểu thức : M = x3 + 3x – 14 với x = 3 7 + 5 2 3
243. Giải các phương trình : a)
b)
3
3
7+5 2
.
x + 2 + 25 - x = 3 .
3
x - 9 = (x - 3) 2 + 6
244. Tìm GTNN của biểu thức : A =
c)
(
x 2 + 32 - 2 4 x 2 + 32 = 3
)
)
(
x3 + 2 1 + x3 + 1 + x3 + 2 1 - x3 + 1 .
245. Cho các số dương a, b, c, d. Chứng minh : a + b + c + d ≥ 4 4 abcd .
8-x
246. Rút gọn : P =
2- 3 x
3
æ
x2
:ç2+
ç
2+ 3 x
è
ö æ3
2 3 x öæ 3 x2 - 4
÷+ç x + 3
÷ çç 3 2
÷
x
2
è
øè x + 2 x
ø
ö
÷;
÷
ø
Voi x > 0 , x ≠ 8
247. CMR : x = 3 5 - 17 + 3 5 + 17 là nghiệm của phương trình x3 – 6x – 10 = 0.
1
248. Cho x =
3
15
4 - 15
+ 3 4 - 15 . Tính giá trị biểu thức y = x3 – 3x + 1987.
www.MATHVN.com
WWW.MATHVN.COM
MAI TRỌNG MẬU
a + 2 + 5.
249. Chứng minh đẳng thức :
3
9-4 5
= - 3 a -1.
2 - 5 .3 9 + 4 5 - 3 a 2 + 3 a
æ3
ö
9 + 4 5 + 3 2 + 5 ÷ . 3 5 - 2 - 2,1 < 0 .
è
ø
250. Chứng minh bất đẳng thức : ç
251. Rút gọn các biểu thức sau :
æ
ö ç 1+ 23 1
a + a b + b
4b
b
÷ .ç
a) A =
3
÷
3 2
1
3
a + 3 ab + 3 b 2
b + 2 ÷ ç 1 - 2.
3
ç
ø
b
è
æ a 3 a - 2a 3 b + 3 a 2 b 2 3 a 2 b - 3 ab 2 ö 1
c) C = ç
+ 3
÷. 2 .
3
3 2
3
ç
÷ 3a
a
b
a
ab
è
ø
3
4
252. Cho M =
3
2
2
3
4
æ
b
b) ç
ç b +8
ç
è
(
)
ö
÷ 24
÷÷ b +8
÷
ø
x 2 - 4a + 9 + x 2 - 4x + 8 . Tính giá trị của biểu thức M biết rằng:
x 2 - 4x + 9 - x 2 - 4x + 8 = 2 .
253. Tìm giá trị nhỏ nhất của : P = x 2 - 2ax + a 2 + x 2 - 2bx + b 2 (a < b)
254. Chứng minh rằng, nếu a, b, c là độ dài 3 cạnh của một tam giác thì :
abc ≥ (a + b – c)(b + c – a)(c + a – b)
255. Tìm giá trị của biểu thức | x – y | biết x + y = 2 và xy = -1
256. Biết a – b = 2 + 1 , b – c = 2 - 1, tìm giá trị của biểu thức :
A = a2 + b2 + c2 – ab – bc – ca.
257. Tìm x, y, z biết rằng : x + y + z + 4 = 2 x - 2 + 4 y - 3 + 6 z - 5 .
258. Cho y =
số.
x + 2 x - 1 + x - 2 x - 1 . CMR, nếu 1 ≤ x ≤ 2 thì giá tr
 





